
Security 101

Ben Mezger

Univali
http://www.univali.br

<2015-08-08 Sat>

mailto:mezger.benjamin@gmail.com
http://www.univali.br

Outline

Section 1

Introduction

Cypherpunks

Privacy is necessary for an open society in the electronic
age.
We cannot expect governments, corporations, or other
large, faceless organizations to grant us privacy out of
their beneficence.
We must defend our own privacy if we expect to have any.
Cypherpunks write code. We know that someone has to
write software to defend privacy, and since we can’t get
privacy unless we all do, we’re going to write it.1

1
http://www.activism.net/cypherpunk/manifesto.html

http://www.activism.net/cypherpunk/manifesto.html

Julian Assange

Wikileaks
Chief-in-chief
Stablished in 2006
Published classified secret information

Freedom of speech
Believes governamental documents should be public

Programming
Author of Transmission Control Protocol (TCP) port scanner
strobe.c
PostgreSQL patches
etc

Author of Cypherpunks: Freedom and the future of the
internet

Jacob Appelbaum

Independent journalist
Computer security researcher

Core member of Tor

Hacker
Representer of Wikileaks in 2010
Edward Snowden
Contributed to Cypherpunks: Freedom and the future of the
internet

Jeremie Zimmermann

La Quadrature du Net.
Contributed to Cypherpunks: Freedom and the future of the
internet

Blackhat vs Greyhat vs Whitehat

Blackhat
Violate security

Stealing creditcard numbers
Harvest personal data
Totally malicious

Whitehat
"Ethical" hackers
Use their hacking abilities for good

Fix problems blackhat could try to hack

Usually they work for a company as penetration testers

Greyhat
Falls between Black/whitehat
Usually they don’t work for their own
May technically commit crimes and do unethical things

Tools we will use

Linux (Duh!)
The GNU debugger (GDB)
Linux debugging tools

Strace
Ltrace

Section 2

Code debugging

There are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies and the
other way is to make it so complicated that there are no obvious

deficiencies.
C.A.R. Hoare, The 1980 ACM Turing Award Lecture

When in doubt, use brute force.
Ken Thompson

Companies spend millions of dollars on firewalls, encryption and
secure access devices, and its money wasted, because none of these

measures address the weakest link in the security chain. Kevin
Mitnick

Finding bugs

Bugs are annoying, difficult to find and sometimes difficult to fix.

Are there easier ways to debug without using a real debugger?
- Yes, there is!

System calls

In computing, a system call is how a program requests a
service from an operating system’s kernel. This may
include hardware-related services (for example, accessing a
hard disk drive), creation and execution of new processes,
and communication with integral kernel services such as
process scheduling. System calls provide an essential
interface between a process and the operating system.2

2
https://en.wikipedia.org/wiki/System_call

https://en.wikipedia.org/wiki/System_call

Strace

Strace monitors the system calls and signals of a specific program.
It’s helpful when you don’t have the source code to properly debug
the program.
From the man page;

DESCRIPTION

....

strace is a useful diagnostic, instructional,

and debugging tool. (....)

(...) Students, hackers and the overly-curious

will find that a great deal can be learned about

a system and its system calls by tracing even

ordinary.(...)

Strace examples

trace ls execution

strace /bin/ls

trace only the open call in ls

strace -e open /bin/ls

trace mulitple calls in ls

strace -e trace=open,read /bin/ls

store strace output

strace -o output.txt /bin/ls

strace a running process (run as root)

strace -e trace=open, read -p /pid/ -o pid.txt

generate statistic report of system calls

strace -c /bin/ls

Strace exercices

See
http://github.com/security-101/exercices/strace_ex.c

http://github.com/security-101/exercices/strace_ex.c

Ltrace

ltrace intercepts and records the dynamic library calls which are
called by the executed process and the signals which are received by
that process.3

The different between ltrace and strace is the relevant information
it gives you. Usually, ltrace gives a nicer and cleaner output.

3
http://ltrace.org

http://ltrace.org

Ltrace examples

trace calls to library functions

ltrace /bin/ls

trace a running process

ltrace -p /PID/

trace selective library calls

ltrace -e malloc /bin/cat

Ltrace exercices

Bugs ≈ vunerabilities

Bugs usually create new vunerability on your code, they should be
fixed as soon as possible. It doesn’t mean the code runs and it does
what it needs to do that there aren’t any vunerabilities. This is
what we are focussing on Security 101; find the vunerabilities, learn
how to attack them and then fix them.

Section 3

Dynamic linker tricks

In computing, a dynamic linker is the part of an operating
system that loads and links the shared libraries needed by
an executable when it is executed (at "run time"), by
copying the content of libraries from persistent storage to
RAM, and filling jump tables and relocating pointers. The
specific operating system and executable format
determine how the dynamic linker functions and how it is
implemented.4

Changing dynamic linkers

A widely used trick, is to change the path of a dynamic linker
library, so instead of using the default libraries, the compiler will use
your custom linker. For example, when calling malloc in a code, it
uses the default path to the malloc library, but what happens if we
change it’s path? What happens if we tell the compiler to link our
code with another library?

Normal code Points to Library path
code.c ——> libc.so
code.c ——> vunerable.so

We could do this without the source code. We just need it’s binary.
We know that ls uses malloc (because of ltrace), so we could
change the dynamic linker to point to a custom malloc.

Hacking the code

We use the LD_PRELOAD to tell GCC where is the path of our
shared objects. That file will be loaded before any other library
(including C runtime libc.so).
If we compile code.c5 we will get some output with random
numbers. The code uses rand() to generate a random number. If
we change the LD_PRELOAD to load our vunerable.c shared object
first, we could change the rand() function.
compile code.c

gcc -o code code.c

create our shared object

gcc -shared -fPIC vunerable.c -o unrandom.so

point to the shared object

LD_PRELOAD=$PWD/unrandom.so ./code

5see dynamic_linkers/code.c

How does it work work?

We told code.c to use the real rand function, so why did it use the
vunerable one?
To check the libraries that code loads when executing it’s process,
we use ldd.
$ ldd code

linux-vdso.so.1 (0x00007ffe56bd1000)

libc.so.6 => /usr/lib/libc.so.6 (0x00007f385f127000)

/lib64/ld-linux-x86-64.so.2 (0x00007f385f4c9000)

These are the libs needed by code. These are built into the
executable and determined at compile time. The must be there
library is the libc.so, this is the files which provides the C
functionality; and it also includes rand.

How does it work?

By setting LD_PRELOAD, we force some libraries to be loaded for a
program.
$ LD_PRELOAD=$PWD/unrandom.so ldd a.out linux-path

linux-vdso.so.1 (0x00007ffdc29f1000)

/home/ephexeve/Documents/org/security-101/

dynamic_linkers/unrandom.so (0x00007f8fba2ad000)

libc.so.6 => /usr/lib/libc.so.6 (0x00007f8fb9f0b000)

/lib64/ld-linux-x86-64.so.2 (0x00007f8fba4ae000)

LD_PRELOAD injection

Using LD_PRELOAD we can inject real code in a way that the
application will be able to function normaly. We don’t want to
break things, if we break things, it will make it harder for us.

